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Critical properties of a three-dimensional p-spin model
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Abstract. In this paper we study the critical properties of a finite dimensional generalization of the p-spin
model. We find evidence that in dimension three, contrary to its mean field limit, the glass transition is
associated to a diverging susceptibility (and correlation length).
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1 Introduction

Two different transition mechanisms are known in spin
glass mean-field theory [1,2], according to the form of
the random Hamiltonian. In some models, like the infi-
nite range Sherrington-Kirkpatrick (S-K) model for spin
glasses, there is a second order glassy transition with di-
verging spin-glass susceptibility and continuous replica
symmetry breaking. In other models, whose prototype is
the Random Energy Model, the transition is first order
with a Gibbs-Dimarzio like entropy crisis. Other exam-
ples of models with the second type of behavior are infi-
nite range spin models with p-spin interaction, with p > 2,
both for Ising spins and for spherical spins.

Beyond mean field theory, numerical simulations indi-
cate that the first type of mechanism describes the ergod-
icity breaking transition of finite dimensional spin glasses
[3]. The second mechanism is more appropriate to describe
the behavior of structural glasses [4]. The passage from
mean-field to finite dimension is in both cases highly non
trivial. Despite many progresses [5] the problem of includ-
ing fluctuations in the description of the finite dimensional
spin glass transition is far from being achieved. For that
reason the test of the mean-field picture has been left in
the last 15 years to the numerical study of the Edwards-
Anderson model, which admits the SK as infinite dimen-
sional limit.

Strangely, there are only few numerical studies of fi-
nite dimensional spin models that could have a transition
homologous to the mean-field discontinuous transition.
Given the possible relevance of this transition to struc-
tural glasses, the study of such finite dimensional models
is of primary importance.

Up recently, to our knowledge, the only studies ap-
peared in the literature, are those of references [6,7]. In
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reference [7] it was proposed a generalization of the p-
spin model which presents a phenomenology reminiscent
to that of structural glasses. However, the difficulty to
decide about the existence of a phase transition and the
presence of spurious symmetries, makes necessary to re-
sort to better conceived models without spurious effects.

In this paper we introduce, and study numerically, a
finite dimensional model with N spin per sites and p-spin
interactions, that for all dimensionality tends to a mean-
field behavior for N → ∞. As it happens in ordinary
field-theory, this large N approach is complementary to
the high-dimensionality approach. We study this model
for p = 4 in D = 3. A complementary study of the same
model (still for p = 4 and D = 3) in the low temperature
regime can be found in reference [8]. Some numerical sim-
ulation of the p = 3 model for D = 4 can be found in
reference [9].

2 A finite dimensional p-spin model

The long range p-spin model [10] is soluble and its Hamil-
tonian is given by

H = −
1,N∑

i1<...<ip

Ji1,...,ipSi1 ...Sip , (1)

where the variables J are random with zero average
and variance 1/N (p−1) (the same result is obtained for
Gaussian distributed variables and in the case J =
±1/N ((p−1)/2)) and the spins are Ising variables (also the
spherical case is soluble).

This Hamiltonian can be generalized in many ways
in finite D. The way we follow in this paper is the fol-
lowing: we consider a D dimensional square lattice with
N Ising spins Sαx (α = 1, ..., N) in each site x of the
lattice. For any given couple of nearest neighbor sites
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there are (2N)!/p!(2N − p)! possible groups g of p-spins.
We consider the product of all the spins in each group, and
we couple them with a random variable Jg. The resulting
Hamiltonian, with transparent notation, is

H = −
∑
〈x,y〉

∑
g∈(x,y)

Jg
∏
µ∈g

Sµ, (2)

where we have relabeled the spins. The Jp are chosen in-
dependently from link to link and group to group and are
equal to ±1 with probability 1/2. The mean field limit is
recovered both for high dimension (D →∞) and finite N
or for large N and finite D. Indeed it is possible to con-
struct a loop expansion for the development in powers of
1/N [11]. In this paper we present a numerical study of the
model in D = 3 for low values of N above the transition
point.

We have simulated the physics of the model through
Monte-Carlo method with the Metropolis algorithm. We
have studied in detail the cases p = 4 and N = 3 and 4. As
we will see the results do not seem to depend qualitatively
on N in this range of N (for N = 2 and p = 4 the model
is isomorphic to the usual short range Edwards-Anderson
model for spin glasses up to a redefinition of the variables
that affects trivially the free-energy)1. The size of the sys-
tem chosen in most of the simulations was L = 20. We
checked that for L = 30 the systems behaves in a com-
patible way, but we did not perform a systematic study of
the finite size effects2.

In this first study of the model we discuss mainly three
issues:

• the existence of a glass transition by means of the
study of the thermodynamics of the model, through
the behavior of the energy and the entropy in simula-
tions of “cooling experiments”;
• the behavior of the time dependent auto-correlation

function at equilibrium and the growth of the relax-
ation time as the glass transition is approached;
• the existence of a growing spin-glass correlation length.

Let us start with the discussion of cooling experiments.
In Figures 1 and 2 we show the energy as a function of the
temperature for different cooling rates for N = 3 and 4 re-
spectively. The cooling rate κ is equal to the inverse of the
number of Monte-Carlo sweeps done at each temperature.
We recognize in both cases the typical curves of systems
undergoing a glass transition, and remaining frozen below
a cooling rate dependent freezing temperature. In the fig-
ure with N = 4 we have plotted for comparison purposes
the line corresponding to the first term of the high tem-
perature expansion. We see that until quite near to the
freezing the energy of the system remains close to that

1 For N = 2 and p = 4 the Hamiltonian only contains terms
of the kind Ji,jS

1
i , S

2
i S

1
j , S

2
j , that reduce to Ji,jσiσj defining

σi = S1
i S

2
i .

2 In the temperature window where we have studied the
model correlation length ξ was always less than 3, so that we
stay in the regime where L/ξ � 1 and no finite size effects are
expected.
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Fig. 1. The energy for N = 3 and three different values of
the cooling rate κ = 2−5, 2−8, 2−17.
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Fig. 2. The energy for N = 4 and three different values of the
cooling rate (2−5, 2−7, 2−12), together with the first term of
the high temperature expansion. The curves stay close to the
first term of the high temperature expansion until very close
to where they fall off equilibrium.

line. This is reminiscent to what happens in mean-field,
where the line is followed up to the transition point.

In Figure 3 we study the dependence of the energy on
the cooling rate for the N = 4 model for T = 2 and T = 4
as a function of the inverse cooling rate. The data are
compatible with a power law relaxation of the kind E(κ) =
E∞+Aκu with a temperature dependent exponent u. For
instance a fit of the data for T = 2, 4 gives E(κ)|T=2 =
−65.8+11.6κ0.21 and E(κ)|T=4 = −65.1+11.9κ0.23. This
dependence contrasts with the much slower logarithmic
dependence observed in real glasses and is the first sign of
criticality in the system.

In the equilibrium regime (which is reached for suf-
ficient long simulations) we can obtain free-energy and
entropy integrating the data of the internal energy and
taking into account that at infinite temperature the en-
tropy per spin is S(T = ∞) = log 2. The free-energy is
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Fig. 3. The energy for N = 4 as a function of the inverse
cooling rate. From top to bottom T = 8, 6, 4, 2. The full lines
are the power law fits discussed in the text.

reconstructed as

F = log 2− T

∫ 1/T

0

E(β)dβ, (3)

and from it the entropy, that we plot in Figure 4. We ob-
serve that S(T ) behaves linearly in a wide range of tem-
peratures suggesting the validity of the Gibbs-Di Marzio
transition mechanism for this model. As we will see the
model with N = 3 seems to have a transition around
T = 2.6 while the linear extrapolation of the entropy van-
ishes only at T ≈ 1.8. However it is not the total entropy,
but the “configurational entropy” (associated to the num-
ber of possible metastable states) that should vanish at
the transition.

We now turn to the more difficult question of the iden-
tification and characterization of the phase transition in
the model. We have studied that issue limiting ourselves to
the case N = 3. The quantity over which we have concen-
trated is the overlap correlation length measured in large
systems L = 20 and L = 30 at temperatures greater than
the critical temperature where finite volume effects can
be neglected. In this way we avoided the rather delicate
job of thermalize the system too near to critical temper-
ature. We simulated two identical replicas in parallel (σ
and τ), and after thermalization we measured the overlap
correlation function:

G(x) =
1

N2V

V∑
i=1

N∑
α=1

N∑
β=1

σαi σ
α
i+xτ

β
i τ

β
i+x. (4)

The spin glass susceptibility is defined as

χSG =

∫
d3x G(x). (5)

The data for the function G(x) are shown in Figure 5
for T = 3, together with the the best fit of the form
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Fig. 4. The entropy as a function of the temperature for
N = 3.
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Fig. 5. Overlap correlation function as a function of distance
for N = 3, T = 3, together with the fit of the form c(x) =
(A/(x+ 1)) exp(−x/ξ). The value of ξ from the fit is ξ = 2.5.

G(x) = A/(x + 1)1+η exp(−x/ξ) with η = 0. We have
done similar fits at different temperatures and in this way
we have extracted the value of the correlation length. If
we plot this correlation length as a function of the temper-
ature (Fig. 6) we see that the data are best fitted by the
power form ξ ≈ (T − Tc)ν , with Tc = 2.62 and ν = 0.71.
However from Figure 7 we see that the data are also well
compatible with ν = 2/33. The value ν = 2/d was pro-
posed in [13] for the Potts glass (a model with a modality
of transition in mean-field identical to the p-spin model)
on the basis of the hyperscaling relation νd = 2− α not-
ing that α = 0. The same result was obtained in [14] on
the basis of the requirement of continuity of the configura-
tional entropy at the transition point. In Section 3 we will
support this result with a scaling argument (not neces-
sarily in contradiction with the quoted ones) based on the
statistical inhomogeneity of the quenched disorder. Differ-
ently from mean field there is a static correlation length

3 Note that we extract the exponent ν from the behavior of
the correlation function and not from finite size scaling. Dif-
ferently from this last case the equality ν = 2/d is not trivially
obtained [12].
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Fig. 6. Inverse of the correlation length versus temperature
for N = 3 and fit ξ−1 = (T − Tc)

ν , ν = 0.71, Tc = 2.62.
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Fig. 7. Correlation length ξ to the power −2/3 versus tem-
perature for N = 3. The curve is a linear fit.

growing in the system, that suggests a second order phase
transition.

Similar conclusions also come from the analysis of the
spin glass susceptibility, which grows of about a factor ten
in the range 3 < T < 4.4. The data, shown in Figure 8
are roughly compatible with a power law divergence of the
susceptibility as ∼ ξ2.4, which using the value 2/3 for ν
corresponds to χSG ≈ (T − Tc)−γ with γ = 1.6. These
values for the critical exponents γ and ν are definitely
different from those of the Edwards Anderson (EA) spin
glass models: they are a factor 2–3 times smaller [3]. For a
comparison among the behavior of our model and the EA
spin glass at low temperature we refer the reader to [8].

The last aspect that we have studied is the equilib-
rium relaxation, and the relation of the relaxation time
with the correlation length. In Figure 9 we show the time
autocorrelation function

C(t) =
1

NV

∑
i,α

σαi (t)σαi (0) (6)

for various temperature for N = 4. We see that a form
C(t) = A exp(−(t/τ)β) fits excellently the data. We ex-
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Fig. 8. Spin glass susceptibility χSG versus ξ for N = 3 and
the power best fit which gives χ ∼ ξ2.4
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Fig. 9. Time dependent auto-correlation function at equi-
librium in the N = 4 model for, from top to bottom, T =
5, 6, 7, 8, 9, 10 the lines are stretched exponential fits.

tract from that the relaxation time τ (Fig. 10) and the
exponent β that we plot in Figure 11.

We also done the same analysis for N = 3 with similar
results. It is interesting to plot τ versus ξ which shows the
compatibility of our data with the relation τ ∼ ξz (see
Fig. 12). This scaling form is at variance with the results
of [7] for the other short range p-spin model we mentioned
in the introduction, and experiments in structural glasses.
The high value of z we find i.e. z = 8 (which by coinci-
dence is quite similar to the value in the Edwards Ander-
son spin glass model) implies a violent divergence of the
correlation time near the transition and it is responsible of
the large correlation time needed to reach thermalization.

The difference of behavior with respect to the mean-
field can be rationalized with the argument presented in
the next section, which also implies ν = 2/3.
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Fig. 10. Relaxation time extracted from the autocorrelation
function as a function of the temperature for N = 4. The line
is a power law fit τ = 117.8 (T − 6.4)2.

3 A possible interpretation

The difference among the short range model and the ho-
mologous infinite range model (which can be solved in the
mean field approximation) are quite striking. No precur-
sor signs of the transition are present in the infinite range
model and the spin glass susceptibility remains finite up to
the transition point. Here we will present and rough scal-
ing argument which suggests that in short range models
with quenched local disorder the spin glass susceptibility
is divergent as in second order phase transitions.

The precise reasons for this discrepancy are not clear
to us. The simplest scenario we have considered is the
following [14]. The disorder induces fluctuations in the lo-
cal transition temperature. For a given region of radius
R centered around the point x we can define and effec-
tive critical temperature TR(x). It is natural to assume
that the x-dependent fluctuation of TR(x) is a quantity of
order R−D/2, i.e.

TR(x) = T + δTR(x) (7)

with 〈δTR(x)2〉 ∝ RD. At a given temperature T the re-
gions of size R such that TR(x) > T are strongly cor-
related. The typical radius of these region increases as
(T−Tc)2/D suggesting therefore that ν = 2/D. This value
of ν is peculiar for random systems. Indeed there are gen-
eral arguments that show that for second order phase tran-
sitions disorder is relevant if ν ≥ 2/D [15].

We also notice that the same value of ν can be obtained
if we assume that the specific heat has a discontinuity at
the phase transition as predicted by the mean field analy-
sis. In other words we suppose that the specific heat expo-
nent α is equal to zero. The usual scaling law α = 2−Dν
implies the result ν = 2/D. This argument is suggestive,
but the coincidence its prediction with the value of ν we
find may be fortuitous of the dimension three. An inves-
tigation of the model in higher dimensions will give some
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Fig. 11. Stretching exponent versus temperature for N = 4.
The line is a linear fit of the region T < 10: β = 0.093 T −0.29.
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Fig. 12. Relaxation time versus ξ for N = 3. The line is a
power law fit with power z = 8.

information on the validity on this conjecture (numerical
simulations in four dimensions for the p = 3 model [9]
suggest that in this case ν is around 0.5).

We would like at this point to notice that although sta-
tistical inhomogeneity of the disorder are certainly present
also in the EA model, the value of ν found there (ν = 1.2)
clearly indicate that the dominant mechanism for the
growing of the correlation length is different in that model.

4 Conclusions

In this paper we have studied by Monte-Carlo a finite
dimensional version of the p-spin model. We find a sce-
nario for freezing that mixes typical features of structural
glasses, like strong cooling rate dependence of the low tem-
perature energy, with features of second order phase tran-
sitions with power law growing of the correlation length
and critical dynamics. This is a genuine finite dimensional
effect due to the quenched disorder which can be rational-
ized qualitatively with the argument we have given and
the ones of references [13,14]. According to this argument,
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the statistical inhomogeneity of the disorder are the domi-
nant mechanism for the appearance of a correlation length
in the model. Clearly, the mean field theory and the per-
turbative expansion around it [11], assuming strong ho-
mogeneity, can not give account of this phenomenon. We
hope that a theoretical understanding could come from
the inclusion of non-perturbative effects in the replica field
theory associated to the model [16]. The simulations of dis-
ordered finite dimensional analogous of systems with “one
step replica breaking” is just at the beginning and much
progress can be expected in the future.
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